Consulting
& Publishing
Table of Contents:
Preface i  
Fundamentals of Integral Calculus 1  
1.1  The Fundamental Theorem of Calculus 7  
1.1.1  The Substitution Method 8  
1.1.2  The Method of Partial Integration 9  
1.2  The Improper Integral 10  
1.1.2  Euler's Gamma Function 12  
1.3  Riemann Sums and Arc Length 13  
Fourier Series 17  
2.1  Uniform Convergence of Function Sequences 20  
2.1.1  Gibbs' Phenomenon 25  
2.1.2  Differentiation of the Limiting Function 26  
2.2  Absolutely Convergent Series 28  
2.3  Fourier Series Theory 30  
2.3.1  The Completeness Theorem 35  
Three-Dimensional Euclidean Space 39  
3.1  The Scalar Product 40  
3.2  The Vector Product 42  
3.2.1  Geometric Interpretation 43  
3.3  The Isometry of Euclidean \(\mathbb{R}^3\) 46  
3.3.1  Description of Linear Self-Mappings through Matrices 47  
3.4  The Scalar Triple Product 48  
3.4.1  Geometric Significance of the Scalar Triple Product 49  
3.5  The Inverse Matrix 51  
3.5.1  The Orthogonal Group \(O_3\) of Euclidean \(\mathbb{R}^3\) 52  
Systems of Linear Equations 55  
4.1  Solutions for Systems of Linear Equations 57  
4.1.1  The Gaussian Algorithm 57  
Plane and Spatial Curves 63  
5.1  Definition of the Curve Length 65  
5.2  The Line Integral over a Vector Field 66  
5.3  Polar Coordinates for Plane Curves 68  
5.4  The Curvature of a Plane Curve 70  
Neighborhoods and Limits 77  
6.1  Fixed Point Theorem 81  
Partial and Total Derivative 85  
7.1  Definition of the Partial Derivative 85  
7.1.1  Generalized Chain Rule 88  
7.2  Definition of the Total Derivative 90  
7.2.1  Geometric Properties of the Total Derivative 92  
Higher Derivatives, Taylor Formula and Local Extrema 95  
8.1  The Symmetry of the Second Derivative 95  
8.1.1  Integrability Criterion for Vector Fields 96  
8.2  A Simple Version of the Taylor Formula in \(\mathbb{R}^n\) 98  
8.2.1  Application of the Simple Version of the Taylor Formula to Stationary Points 99  
Implicit Functions and Applications 103  
9.1  Existence Theorem for Implicit Functions 105  
9.2  Local Extrema with Constraints 107  
9.3  The Problem of Reverse Mapping (Coordinate Transformation) 113  

©  ATICE LLC  2022